MATHEMATICS

Class-IX

Topic-1 NUMBER SYSTEM

INDEX					
S. No.	Торіс	Page No.			
1.	Theory	1 – 18			
2.	Exercise (Board Level)	19 – 21			
3.	Exercise-1	22 – 25			
4.	Exercise-2	26 - 27			
5.	Exercise-1	28-30			
6.	Answer Key	31 – 33			

CH-01 NUMBER SYSTEM

A. INTRODUCTION TO NUMBER SYSTEM & RATIONAL NUMBERS

(a) Classification of Numbers

(i) Natural numbers : Counting numbers are known as natural numbers.

 $\mathbf{N}=\{\;1,\,2,\,3,\,4,\,\dots\;\}.$

(ii) Whole numbers : All natural numbers together with 0 form the collection of all whole numbers. W = { 0, 1, 2, 3, 4, ... }.

(iii) Integers : All whole numbers and negative of natural numbers form the collection of all integers.

I or $\mathbf{Z} = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}.$

(iv) Rational numbers : The numbers which can be expressed in the form of $\frac{p}{q}$, where **p** and **q** are

integers and $q \neq 0$.

For example : $\frac{2}{3}$, $-\frac{37}{15}$.

All natural numbers, whole numbers and integers are rational.

(v) Real numbers : Numbers which can represent actual physical quantities in a meaningful way are known as **real numbers**. They can be represented on the number line.

Real numbers include all rational and irrational numbers.

(vi) **Prime numbers :** Prime numbers are natural numbers greater than 1 and each of which is divisible by 1 and itself only. For example : 2, 3, 5, 7, 11, 13, 17, 19, 23, ... etc.

(vii) Composite numbers : All natural numbers greater than 1 which are not prime numbers.

1 is neither prime nor composite number.

(viii) **Co-prime Numbers :** If the H.C.F. of the given numbers (not necessarily prime) is 1 then they are known as **co-prime numbers**. For example : 4, 9 are co-prime as H.C.F. of (4, 9) = 1.

Any two consecutive numbers will always be co-prime.
 (ix) Even Numbers : Integers divisible by 2
 E = { ..., -2, 0, 2, ... }.
 (x) Odd Numbers : Integers not divisible by 2
 O = { ..., -3, -1, 1, 3, ... }.

(b) Rational number in decimal form

(i) Terminating Decimal :

Let \mathbf{x} be a rational number whose decimal expansion terminates. Then, \mathbf{x} can be expressed in the

form $\frac{p}{q}$, where **p** and **q** are co-prime, and prime factorization of **q** is of the form $2^m \times 5^n$, where **m**, **n**

are non-negative integers. In such rational numbers finite decimal number of digit occurs after decimal.

For example : $\frac{1}{2}$ = 0.5, $\frac{11}{16}$ = 0.6875, $\frac{3}{20}$ = 0.15 etc.

(ii) Non-Terminating and Repeating (Recurring Decimal) :

Let $x = \frac{p}{q}$ be a rational number, such that the prime factorization of **q** is not of the form $2^m \times 5^n$,

where \mathbf{m} , \mathbf{n} are non - negative integers. Then, \mathbf{x} has a decimal expansion which is non - terminating repeating. In this a set of digits or a digit is repeated continuously.

For example :
$$\frac{2}{3} = 0.6666.... = 0.\overline{6}$$
 and $\frac{5}{11} = 0.454545.... = 0.\overline{45}$.

(c) Representation of rational number on a real number line

* Representing terminating Decimals on Number line :

The process of visualization of number on the number line through a <u>magnifying glass is known as</u> <u>successive magnification.</u>

Sometimes, we are unable to check the numbers like 3.765 and $4.\overline{26}$ on the number line. We seek the help of magnifying glass by dividing the part into subparts and subparts into again equal subparts to ensure the accuracy of the given number.

Method to Find Such Numbers on the Number Line

1. Choose the two consecutive integral numbers in which the given number lies.

2. Choose the two consecutive decimal points in which the given decimal part lies by dividing the two given decimal parts into required equal parts.

3. Visualize the required number through magnifying glass.

(d) Conversion of recuring decimal into fraction

(i) Long Method :

Step 1 : Take the mixed recurring decimal and let it be equal to x.

Step 2 : Count the number of nonrecurring digits after the decimal point. Let it be n.

Step 3 : Multiply both sides of equation by 10^{n} so that only the repeating decimal is on the right hand side of the decimal point.

Step 4 : Multiply both sides of equation obtained in step 3 by 10^m where m is the number of repeating digits in the decimal part.

Step 5 : Subtract the equation in step 3 from equation obtained in step 4.

Step 6 : Divide both sides of the resulting equation by the coefficient of **x**.

Step 7: Write the rational number thus obtained in the simplest $\frac{p}{q}$ form.

(ii) Direct Method :

Step1: To obtain numerator subtract the number formed by non-repeating digits from the complete number without decimal. (Consider repeated digits only once.)

Step2: To obtain denominator take number of nines = Number of repeating digits & after that put number of zeros = number of non-repeating digits.

(e) Finding Rational Numbers Between Two Integral Number :

Method - I

Let a & b are two given rational numbers such that a < b. If n rational numbers are inserted between a & b.

Then, multiply numerator and denominator of a and b by $\frac{n+1}{n+1}$.

 $a = a \times \frac{n+1}{n+1}$ and $b = b \times \frac{n+1}{n+1}$.

a + a < b + a

Then, as we increase the value of numerator we get rational numbers between a & b.

Method - II

 \rightarrow

Let a & b are two given rational numbers such that a < b then, a < b

[adding a both sides]

$$\Rightarrow 2a < a + b \Rightarrow a < \frac{a + b}{2}$$

Again, a < b
⇒ a + b < b + b. [adding b both sides]
⇒ a + b < 2b ⇒
$$\frac{a+b}{2} < b$$
.
∴ a < $\frac{a+b}{2} < b$. i.e. $\frac{a+b}{2}$ lies between a and b.
Hence 1st rational number between a and b is $\frac{a+b}{2}$.
For next rational number $\frac{a+\frac{a+b}{2}}{2} = \frac{2a+a+b}{2} = \frac{3a+b}{4}$
∴ a < $\frac{3a+b}{4} < \frac{a+b}{2} < b$.
next $\frac{\frac{a+b}{2}+b}{2} = \frac{a+b+2b}{2\times 2} = \frac{a+3b}{4}$
∴ a < $\frac{3a+b}{4} < \frac{a+b}{2} < \frac{a+3b}{4} < b$. and continues like this.

Solved Examples

Example.1

Is (39, 93) a coprime ?

Sol. HCF of (39, 93) is 3.

∴ (39, 93) is not coprime.

Example.2

Represent $\frac{3}{7}$ on a real number line.

- **Sol.** (i) Draw a line XY which extends endlessly in both the directions.
 - (ii) Take a point O on it and let it represent O (zero).
 - (iii) Taking the fixed length, called unit length, mark off OA = 1 unit, as shown in figure below
 - (iv) Divide OA into 7 equal parts. OP represents $\frac{3}{7}$ of a unit.

$$\begin{array}{c|c}
 & 3 \\
7 \\
\hline
0 \\
\hline
A \\
\hline
X \\
0 \\
P \\
1 \\
Y
\end{array}$$

Example.3

Represent $\frac{7}{5}$ on a real number line.

Sol. $\frac{7}{5} = 1\frac{2}{5}$

- (i) Draw a line XY which extends endlessly in both the directions.
- (ii) Take a point O on it and let it represent 0 (zero).
- (iii) Taking the fixed length, called unit length, mark off OA = 1 unit and OB = 2 unit.
- (iv) Divide OA and AB into 5 equal parts. OP represents the rational number $\frac{7}{5}$.

Represent $-\frac{13}{4}$ on a real number line.

Sol. $-\frac{13}{4} = -3\frac{1}{4}$

- (i) Draw a line XY which extends endlessly in both the directions.
- (ii) Take a point O on it and let it represent 0 (zero).
- (iii) Taking the fixed length, called unit length, mark off OA = 1 unit and OB = 2 unit and OC = 3 unit on the left side of O.
- (iv) Divide OA , AB, BC and CD into 4 equal parts. OP represents the rational number $-\frac{13}{4}$ of

a unit.

Example.5

Represent 2.5 on a real number line.

Example.6

Represent 2.65 on a real number line by process of magnification.

Sol.

Example.7

Visualize the representation of $5.3\overline{7}$ on the number line upto four decimal places.

Sol.

Express $0.\overline{6}$ to $\frac{p}{q}$ form. **Sol.** Let $x = 0.\overline{6}$ i.e. x = 0.6666... ...(i) Multiply both sides of eq.(i) by 10. 10x = 6.666... ...(ii) Subtract eq.(i) from eq.(ii) 10x = 6.666... -x = -0.666... 9x = 6 $x = \frac{6}{9}$ $x = \frac{2}{3}$.

Example.9

Express $0.\overline{47}$ to $\frac{p}{q}$ form. Sol. Let x = $0.\overline{47}$ i.e. x = 0.474747... ...(i) Multiply both sides of eq.(i) by 100. 100x = 47.474747... ...(ii) Subtract eq.(i) from eq.(ii) 100x = 47.474747... -x = -0.474747...99x = 47 $x = \frac{47}{99}$.

Example.10

Express $0.12\overline{3}$ to $\frac{p}{q}$ form. Let $x = 0.12\overline{3}$ Sol. i.e. x = 0.12333..... ...(i) Multiply both sides of eq.(i) by 100. 100x = 12.333..... ...(ii) Multiply both sides of eq.(ii) by 10 1000x = 123.333..... ...(iii) Subtract eq.(ii) from eq.(iii) 1000 x = 123.333.... -100 x = -12.333....900 x = 111.000 $x = \frac{111}{900} \implies x = \frac{3 \times 37}{900} = \frac{37}{300}.$ Example.11 Express the following to $\frac{p}{q}$ form using direct method : 0.45 0.46573 (i) (ii) 0.737 (iii)

_

Sol. (i)
$$0.\overline{45} = \frac{45 - 0}{99} = \frac{45}{99} = \frac{5}{11}$$
 (ii) $0.7\overline{37} = \frac{737 - 7}{990} = \frac{73}{990} = \frac{73}{99}$.
(iii) $0.46\overline{573} = \frac{46573 - 46}{99900} = \frac{46527}{99900}$.
Example.12
Find 4 rational numbers between 2 and 3.
Sol. Steps:
(i) Multiplying 2 and 3 in N' and D' with (4+1).
(ii) $2 = \frac{2 \times (4+1)}{(4+1)} = \frac{10}{5} & \frac{3 \times (4+1)}{(4+1)} = \frac{15}{5}$.
(iii) So, the four required numbers are $\frac{11}{5}, \frac{12}{5}, \frac{13}{5}, \frac{14}{5}$.
Example.13
Find 3 rational numbers between $\frac{1}{3} & \frac{1}{2}$.
Sol. $\frac{\frac{1}{3} + \frac{1}{2}}{2} = \frac{\frac{2+3}{6}}{2} = \frac{5}{12}$
 $\therefore \qquad \frac{1}{3}, \frac{5}{12}, \frac{1}{2}$
 $\frac{\frac{1}{3} + \frac{5}{12}}{2} = \frac{\frac{4+5}{12}}{2} = \frac{9}{24}$
 $\therefore \qquad \frac{1}{3}, \frac{9}{24}, \frac{5}{12}, \frac{1}{2}$
 $\frac{\frac{5}{12} + \frac{1}{2}}{2} = \frac{\frac{5}{12} + \frac{6}{12}}{2} = \frac{11}{24}$

 $\frac{1}{3}, \frac{9}{24}, \frac{5}{12}, \frac{11}{24}, \frac{1}{2}.$:. So, the required 3 rational number are $\frac{9}{24}, \frac{5}{12}, \frac{11}{24}$

Check Your Level

Represent the number $\frac{3}{5}$ on the number line. 1.

Find a fraction between $\frac{3}{8}$ and $\frac{2}{5}$. 2.

- 3. Insert 5 rational numbers between 3 and 4.
- 4. Which of the following fractions yield a recurring decimal ?

$$\frac{5}{3}; \frac{7}{16}; \frac{9}{14}; \frac{5}{7}; \frac{12}{5}; \frac{6}{11}$$

5. Represent 1. 129129129..... as a fraction.

Answers

2.	<u>31</u> 80	3.	$\frac{19}{6}, \frac{20}{6}, \frac{21}{6}, \frac{22}{6}, \frac{23}{6}$	4.	$\frac{5}{3}, \frac{9}{14}, \frac{5}{7}, \frac{6}{11}$
5.	$x = \frac{1128}{999}$.				

B. IRRATIONAL NUMBERS

All real number which are not rational are called irrational numbers. These are non-recurring as well as non-terminating type of decimal numbers.

i.e. $\sqrt{2}$, $\sqrt[3]{4}$, $2+\sqrt{3}$, $\sqrt{2+\sqrt{3}}$, $\sqrt[4]{\sqrt[7]{3}}$, π , etc..

(a) **Proof of irrationality of numbers**

To prove the irrationality of a given number, a process is done by contradiction method. In logic, proof by contradiction is a form of proof, and more specifically a form of indirect proof, that establishes the truth or validity of a proposition. It starts by assuming that the opposite proposition is true, and then shows that such an assumption lead to a contradiction.

(b) Insertion of irrational numbers between two real numbers

Let a and b are two given real numbers, then irrational number between a and b is $\sqrt{a \times b}$ Provide $a \times b$ is not a perfect square.

(c) Irrational Number on a Number Line

Irrational Number in Decimal Form :

 $\sqrt{2}$ = 1.414213.....i.e. it is non-recurring as well as non-terminating.

 $\sqrt{3}$ = 1.732050807......i.e. it is non-recurring as well as non-terminating.

Properties of Irrational Number :

- (i) Negative of an irrational number is an irrational number. **e.g.** $-\sqrt{3}$, $-\sqrt[4]{5}$ are irrational.
- (ii) Sum and difference of a rational and an irrational number is always an irrational number.
- (iii) Sum, product and difference of two irrational numbers is either rational or irrational number.
- (iv) Product of a rational number with an irrational number is either rational or irrational.

(d) Geometrical representation of real numbers

To represent any real number \sqrt{x} on number line we follow the following steps :

STEP I : Obtain the positive real number **x** (say).

STEP II : Draw a line and mark a point A on it.

STEP III : Mark a point B on the line such that AB = x units.

STEP IV : From point B mark a distance of 1 unit and mark the new point as C. Such that ABC is a straight line.

STEP V : Find the mid-point of AC by drawing the perpendicular bisector of line segment AC and mark the point as O.

STEP VI : Draw a semi circle with centre O and radius OC.

STEP VII : Draw a line perpendicular to AC passing through B and intersecting the semi circle at D. Length BD is equal to \sqrt{x} .

STEP VIII : Taking B as centre and BD as radius, draw an arc cutting OC produced at E. Distance BE represents \sqrt{x} .

EXPLANATION :

We have,

AB = x units and BC = 1 unit.

$$\Rightarrow OA = OC = \frac{x+1}{2} \text{ units}$$

$$\Rightarrow OD = \frac{x+1}{2} \text{ units} \qquad [\because OA = OC = OD]$$
Now, OB = AB - OA = $x - \frac{x+1}{2} = \frac{x-1}{2}$

Using Pythagoras Theorem in $\triangle OBD$, we have

$$\Rightarrow \qquad BD^{2} = \left(\frac{x+1}{2}\right)^{2} - \left(\frac{x-1}{2}\right)^{2} \Rightarrow \qquad BD^{2} = \left(\frac{x+1}{2}\right)^{2} - \left(\frac{x-1}{2}\right)^{2} \Rightarrow \qquad BD^{2} = \sqrt{\frac{4x}{4}} \Rightarrow \qquad B^{2} = \sqrt{\frac{4x}{4} \Rightarrow \qquad B^{2} = \sqrt{\frac{4x}{4}} \Rightarrow \qquad B^{2} = \sqrt{\frac{4x}{4} \Rightarrow \qquad B^{2} = \sqrt{\frac{4x}{4}} \Rightarrow \qquad B^{2} = \sqrt{\frac{4x}{4} \Rightarrow$$

$$D^{2} = OD^{2} - OB^{2}$$

$$BD = \sqrt{\frac{(x^{2} + 2x + 1) - (x^{2} - 2x + 1)}{4}}$$

$$BD = \sqrt{x}$$

This shows that \sqrt{x} exists for all real numbers x > 0.

Solved Examples

Example. 14

Prove that $\sqrt{2}$ is an irrational number.

Sol. Let assume on the contrary that $\sqrt{2}$ is a rational number.

Then, there exists positive integer a and b such that $\sqrt{2} = \frac{a}{b}$ where, a and b are coprime i.e. their HCF is1.

$$\begin{array}{lll} \Rightarrow & (\sqrt{2})^2 = \left(\frac{a}{b}\right)^2 & \Rightarrow & 2 = \frac{a^2}{b^2} \\ \Rightarrow & a^2 = 2b^2 & \Rightarrow & a^2 \text{ is a multiple of } 2 \\ \Rightarrow & a \text{ is a multiple of } 2 & \dots(i) \\ & a = 2c \text{ for some integer } c. \\ \Rightarrow & a^2 = 4c^2 & \Rightarrow & 2b^2 = 4c^2 \\ \Rightarrow & b^2 = 2c^2 & \Rightarrow & b^2 \text{ is a multiple of } 2 \\ \Rightarrow & b \text{ is a multiple of } 2 & \dots(ii) \\ \text{From (i) and (ii), a and b have at least } 2 \text{ as a common factor} \end{array}$$

From (i) and (ii), a and b have at least 2 as a common factor. But this contradicts the fact that a and b are co-prime. This means that $\sqrt{2}$ is an irrational number.

Prove that $3 - \sqrt{5}$ is an irrational number.

Sol. Let assume that on the contrary that $3 - \sqrt{5}$ is rational. Then, there exist co-prime positive integers a and b such that,

$$3 - \sqrt{5} = \frac{a}{b} \implies 3 - \frac{a}{b} = \sqrt{5}$$
$$\frac{3b - a}{b} = \sqrt{5} \implies \sqrt{5} \text{ is rational [a, b are integer } \therefore \frac{3b - a}{b} \text{ is a rational number]}$$

This contradicts the fact that $\sqrt{5}$ is an irrational number.

Hence, $3 - \sqrt{5}$ is an irrational number.

Example.16

 \Rightarrow

Insert an irrational number between 2 and 3.

Sol. $\sqrt{2 \times 3} = \sqrt{6}$.

Example.17

Find two irrational number between 2 and 2.5.

Sol. 1st Method : $\sqrt{2 \times 2.5} = \sqrt{5}$

Since, there is no rational number whose square is 5. So, $\sqrt{5}$ is an irrational number.

Also, $\sqrt{2} \times \sqrt{5}$ is an irrational number.

 2^{nd} Method : 2.101001000100001..... is between 2 and 5 and it is non-recurring as well as non-terminating.

Also, 2.201001000100001 and so on.

Example.18

Plot $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ on a number line.

Sol. Let X'OX be a horizontal line, taken as the x - axis and let O be the origin. Let O represents 0 (zero). Take OA = 1 unit and draw AB ⊥ OA such that AB = 1 unit. Join OB. Then,

OB = $\sqrt{OA^2 + AB^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$ units.

With O as centre and OB as radius, draw an arc, meeting OY at P.

Then, OP = OB = $\sqrt{2}$ units.

Thus the point P represents $\sqrt{2}$ on the real line.

Now draw BC \perp OB such that BC = 1 unit.

Join OC. Then,

OC =
$$\sqrt{OB^2 + BC^2} = \sqrt{(\sqrt{2})^2 + 1^2} = \sqrt{3}$$
 units.

With O as centre and OC as radius, draw an arc, meeting OY at Q.

Then, OQ = OC = $\sqrt{3}$ units.

Thus the point Q represents $\sqrt{3}$ on the real line.

Now draw CD \perp OC such that CD = 1 unit. Join OD. Then,

OD =
$$\sqrt{OC^2 + CD^2} = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$$
 units.

Now draw DE \perp OD such that DE = 1 unit. Join OE. Then,

OE = $\sqrt{OD^2 + DE^2} = \sqrt{(2)^2 + 1^2} = \sqrt{5}$ units.

With O as centre and OE as radius, draw an arc, meeting OY at R. Then, OR = OE = $\sqrt{5}$ units.

Another Method for :

(i) Plot $\sqrt{2}$, $\sqrt{3}$

Draw a number line and mark a point O, representing zero, on it. Suppose a point A represents 1. Then

OA = 1. Now draw a right triangle OAB such that AB = OA = 1.

By pythagoras theorem,

OB = $\sqrt{OA^2 + AB^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$ units.

Now, draw an arc with centre O and radius OB. It cuts the number line at C.

Then, OC = OB = $\sqrt{2}$ units.

Thus the point C represents $\sqrt{2}$ on the real line. Now, draw a right triangle OEC such that CE = AB = 1 unit. Again by pythagoras theorem,

OE =
$$\sqrt{OC^2 + CE^2} = \sqrt{(\sqrt{2})^2 + 1^2} = \sqrt{3}$$
 units.

Now, draw an arc with centre O and radius OE. It cuts the number line at D. Then, OD = OE = $\sqrt{3}$ units.

Check Your Level

- **1.** Which of the following numbers are not rational? 1.256; 0.4545454545...; 0.05005000500005 ...; 5.51551555151...; 2.012340123401234...;
- **2.** Find two irrational numbers between $\sqrt{5}$ and $\sqrt{6}$.
- **3.** Prove that $\sqrt{3}$ is irrational number.
- **4.** Represent $\sqrt{6}$ on the number line.
- **5.** Represent $\sqrt{7.3}$ on the number line.

Answers

1. 0.05005000500005 ...; 5.51551555151...; **2.** √5.1, √5.2

SURDS AND THEIR APPLICATION (C)

(a) Surds

An irrational number of the form $\sqrt[n]{a}$ is given a special name **Surd**, where **'a'** is called **radicand** and it should always be a rational number. Also the symbol $\sqrt[n]{}$ is called the **radical sign** and the index **n** is called **order** of the surd. $\sqrt[n]{a}$ is read as '**n**th **root of a**' and can also be written as a^{n} .

Law of Surds **(b)**

(i)

 $\left(\sqrt[n]{a}\right)^n = \sqrt[n]{a^n} = a$ (ii) $\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$ (iv) $\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a} = \sqrt[m]{\sqrt[n]{a}}$ $\sqrt[n]{a} \div \sqrt[n]{b} = \sqrt[n]{\frac{a}{b}}$ (iii)

(v)
$$\sqrt[n]{a} = \sqrt[n \times p]{a^p}$$
 or $\sqrt[n]{a^m} = \sqrt[n \times p]{a^{m \times p}}$

(C) Operation on Surds

(i) Addition and Subtraction of Surds :

Addition and subtraction of surds are possible only when order and radicand are same i.e. only for like surds.

The addition of surds follow the following rules. Summation of same degree surds is distributive.

$$a\sqrt[n]{p} + b\sqrt[n]{p} = (a+b)\sqrt[n]{p}$$

The subtraction of surds follow the following rules. Subtraction of same degree surds is distributive.

$$a\sqrt[n]{p} - b\sqrt[n]{p} = (a - b)\sqrt[n]{p}$$

(ii) Multiplication and Division of Surds :

For multiplication and division we have to check the order if it is not same then first we make the order of surd same by using LCM of indices. Then we follow the following rule

 $a\sqrt[n]{p} \times b\sqrt[n]{q} = (a \times b)\sqrt[n]{p \times q}$

$$\frac{a\sqrt[n]{p}}{b\sqrt[n]{q}} = \left(\frac{a}{b}\right)\sqrt[n]{\left(\frac{p}{q}\right)}$$

(iii) Comparison of Surds :

It is clear that if x > y > 0 and n > 1 is a positive integer then $\sqrt[n]{x} > \sqrt[n]{y}$.

Rationalization of Surds (d)

Rationalizing factor : Product of two surds is a rational number then each of them is called the rationalizing factor (R.F.) of the other. The process of converting a surd to a rational number by using an appropriate multiplier is known as rationalization.

When the denominator of an expression contains a term with a square root (or a number with radical sign), the process of converting it to an equivalent expression whose denominator is a rational number is called **rationalizing** the **denominator**.

Rationalizing factor of $a^{\frac{1}{n}}$ is $a^{1-\frac{1}{n}}$ where a is a real number. \div

Solved Examples

Example.19

$$\sqrt{75} - \sqrt{45} + \sqrt{50} - \sqrt{32}$$
Sol.
$$\sqrt{75} - \sqrt{45} + \sqrt{50} - \sqrt{32}$$

$$= 5\sqrt{3} - 3\sqrt{5} + 5\sqrt{2} - 4\sqrt{2}$$

$$= 5\sqrt{3} - 3\sqrt{5} + \sqrt{2}.$$

Example.20

Simplify : $5\sqrt[3]{250} + 7\sqrt[3]{16} - 14\sqrt[3]{54}$

Sol. $5\sqrt[3]{250} + 7\sqrt[3]{16} - 14\sqrt[3]{54} = 5\sqrt[3]{125 \times 2} + 7\sqrt[3]{8 \times 2} - 14\sqrt[3]{27 \times 2}$ = $5 \times 5\sqrt[3]{2} + 7 \times 2\sqrt[3]{2} - 14 \times 3 \times \sqrt[3]{2} = (25 + 14 - 42)\sqrt[3]{2} = -3\sqrt[3]{2}$.

Example.21

Simplify : $\sqrt[3]{2} \times \sqrt[4]{3}$.

Sol.
$$\sqrt[3]{2} \times \sqrt[4]{3}$$

= $\sqrt[12]{2^4} \times \sqrt[12]{3^3}$ [order should be made same]
= $\sqrt[12]{2^4} \times 3^3 = \sqrt[12]{16 \times 27} = \sqrt[12]{432}$.

Example.22

Simplify:
$$\sqrt{8a^5b} \times \sqrt[3]{4a^2b^2}$$

Sol. $\sqrt{8a^5b} \times \sqrt[3]{4a^2b^2} = \sqrt[6]{8^3a^{15}b^3} \times \sqrt[6]{4^2a^4b^4}$
 $= \sqrt[6]{2^{13}a^{19}b^7} = 2^2a^3 \ b \ \sqrt[6]{2ab} = 4a^3 \ b \ \sqrt[6]{2ab}$.

Example.23

Divide : $\sqrt{24} \div \sqrt[3]{200}$.

Sol.
$$\sqrt{24} \div \sqrt[3]{200} = \frac{\sqrt{24}}{\sqrt[3]{200}} = \frac{\sqrt[6]{(24)^3}}{\sqrt[6]{(200)^2}} = \sqrt[6]{\frac{216}{625}}$$

Example.24

Which is greater :

(i)
$$\sqrt[3]{6}$$
 and $\sqrt[5]{8}$ (ii) $\sqrt{\frac{1}{2}}$ and $\sqrt[3]{\frac{1}{3}}$

Sol. (i)
$$\sqrt[3]{6}$$
 and $\sqrt[5]{8}$
L.C.M. of 3 and 5 is 15.
 $\sqrt[3]{6} = \sqrt[3x5]{6^5} = \sqrt[15]{7776}$
 $\sqrt[5]{8} = \sqrt[3x5]{8^3} = \sqrt[15]{512}$
 $\therefore \sqrt[15]{7776} > \sqrt[15]{512} \implies \sqrt[3]{6} > \sqrt[5]{8}$

(ii)
$$\sqrt{\frac{1}{2}}$$
 and $\sqrt[3]{\frac{1}{3}}$
L.C.M. of 2 and 3 is 6.
 $\sqrt[6]{\left(\frac{1}{2}\right)^3}$ and $\sqrt[6]{\left(\frac{1}{3}\right)^2}$

Arrange $\sqrt{2}$, $\sqrt[3]{3}$ and $\sqrt[4]{5}$ in ascending order.

Sol.
$$\sqrt{2}$$
, $\sqrt[3]{3}$ and $\sqrt[4]{5}$
L.C.M. of 2, 3, 4 is 12.
 $\therefore \qquad \sqrt{2} = {}^{2\times 6}\sqrt{2^6} = {}^{1}\sqrt{64}$
 $\sqrt[3]{3} = {}^{3\times 4}\sqrt{3^4} = {}^{1}\sqrt{81}$
 $\sqrt[4]{5} = {}^{4\times 3}\sqrt{5^3} = {}^{1}\sqrt{125}$
As, $64 < 81 < 125$.
 $\therefore \qquad {}^{1}\sqrt{64} < {}^{1}\sqrt{81} < {}^{1}\sqrt{125} \implies \sqrt{2} < \sqrt[3]{3} < \sqrt[4]{5}$.

Example.26

Rationalize the denominator
$$\frac{1}{\sqrt{162}}$$
.

Sol.

$$\sqrt{162}$$
 $\sqrt{81 \times 2}$
= $\frac{1}{9\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ = $\frac{\sqrt{2}}{18}$.

 $\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}}$

• Rationalising factor of a + b \sqrt{c} is a – b \sqrt{c} where a,b,c are rational numbers.

Example.27

Rationalize the denominator $\frac{1}{7+5\sqrt{3}}$.

Sol.

Sol.

$$7 + 5\sqrt{3} \quad 7 + 5\sqrt{3} \quad 7 - 5\sqrt{3}$$
$$= \frac{7 - 5\sqrt{3}}{49 - 75} = \frac{7 - 5\sqrt{3}}{-26} = \frac{5\sqrt{3} - 7}{26}.$$

Example.28

Rationalize the denominator of
$$\frac{a^2}{\sqrt{a^2 + b^2} + b}$$
.
 $\frac{a^2}{\sqrt{a^2 + b^2} + b} \times \frac{\sqrt{a^2 + b^2} - b}{\sqrt{a^2 + b^2} - b} = \frac{a^2 \left(\sqrt{a^2 + b^2} - b\right)}{\left(\sqrt{a^2 + b^2}\right)^2 - (b)^2}$

$$= \frac{a^2 \left(\sqrt{a^2 + b^2} - b\right)}{a^2 + b^2 - b^2} = \left(\sqrt{a^2 + b^2} - b\right).$$

Example.29

If $\frac{3+2\sqrt{2}}{3-\sqrt{2}} = a+b\sqrt{2}$, where a and b are rationals in reduced form then, find the values of a and b. LHS $\frac{3+2\sqrt{2}}{2-\sqrt{2}} = \frac{(3+2\sqrt{2})}{(3+\sqrt{2})}$

Sol. LHS
$$\frac{3+2\sqrt{2}}{3-\sqrt{2}} = \frac{(3+2\sqrt{2})}{(3-\sqrt{2})} \frac{(3+\sqrt{2})}{(3+\sqrt{2})}$$

$$= \frac{9+3\sqrt{2}+6\sqrt{2}+4}{9-2} = \frac{13+9\sqrt{2}}{7} = \frac{13}{7} + \frac{9}{7}\sqrt{2}$$

$$\therefore \quad \frac{13}{7} + \frac{9}{7}\sqrt{2} = a + b\sqrt{2}$$

Equating the rational and irrational parts

We get
$$a = \frac{13}{7}$$
, $b = \frac{9}{7}$.

Example.30

If
$$x = \frac{1}{2 + \sqrt{3}}$$
, find the value of $x^3 - x^2 - 11x + 3$.

Sol. As, $x = \frac{1}{2 + \sqrt{3}} = 2 - \sqrt{3} \implies x - 2 = -\sqrt{3}$ $\Rightarrow (x - 2)^2 = (-\sqrt{3})^2$ [By squaring both sides] $\Rightarrow x^2 + 4 - 4x = 3 \implies x^2 - 4x + 1 = 0$ Now, $x^3 - x^2 - 11x + 3 = x (x^2 - 4x + 1) + 3 (x^2 - 4x + 1)$ = x (0) + 3 (0) = 0 + 0 = 0.

Example.31

If
$$x = 3 - \sqrt{8}$$
, find the value of $x^3 + \frac{1}{x^3}$.

Sol.
$$x = 3 - \sqrt{8}$$

 $\therefore \qquad \frac{1}{x} = \frac{1}{3 - \sqrt{8}} \implies \qquad \frac{1}{x} = 3 + \sqrt{8}$
Now, $x + \frac{1}{x} = 3 - \sqrt{8} + 3 + \sqrt{8} = 6$
 $\Rightarrow \qquad x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3x\frac{1}{x}\left(x + \frac{1}{x}\right) \implies \qquad x^3 + \frac{1}{x^3} = (6)^3 - 3(6)$
 $\Rightarrow \qquad x^3 + \frac{1}{x^3} = 216 - 18 \implies \qquad x^3 + \frac{1}{x^3} = 198.$

Example.32

If
$$\sqrt{5} = 2.236$$
 and $\sqrt{2} = 1.414$, then evaluate : $\frac{3}{\sqrt{5} + \sqrt{2}} + \frac{4}{\sqrt{5} - \sqrt{2}}$
Sol. $\frac{3}{\sqrt{5} + \sqrt{2}} + \frac{4}{\sqrt{5} - \sqrt{2}} = \frac{3(\sqrt{5} - \sqrt{2}) + 4(\sqrt{5} + \sqrt{2})}{(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})}$
 $= \frac{3\sqrt{5} - 3\sqrt{2} + 4\sqrt{5} + 4\sqrt{2}}{5 - 2} = \frac{7\sqrt{5} + \sqrt{2}}{5 - 2}$
 $= \frac{7\sqrt{5} + \sqrt{2}}{3}$
 $= \frac{7 \times 2.236 + 1.414}{3}$
 $= \frac{15.652 + 1.414}{3}$
 $= \frac{17.066}{3} = 5.689$ (approximately)

Check Your Level

- 1. What is the simplest form of $\sqrt{200} \sqrt{50}$?
- **2.** Rationalise the denominator of $\frac{5}{\sqrt{10} + \sqrt{5}}$.
- 3. If $x = \sqrt{2} 1$ what is the value of x 1/x ?

4. Simplify
$$(\sqrt{5} + 1)^2 + (\sqrt{5} - 1)^2$$
.

5. If
$$x = \frac{\sqrt{5} - 2}{\sqrt{5} + 2}$$
, find the value of $x + \frac{1}{x}$.

Answers

1. $5\sqrt{2}$ **2.** $\sqrt{10} - \sqrt{5}$ **3.** -2 **4.** 12 **6.** 18

D. EXPONENTS

(a) Exponents of Real Numbers

(i) Positive Integral Power :

For any real number **a** and a natural number **'n'** we define **a**ⁿ as :

 $a^n = a \times a \times a \times \dots \times a$ (n times)

 a^n is called the n^{th} power of a. The real number 'a' is called the **base** and 'n' is called the **exponent** of the n^{th} power of a.

e.g. $2^3 = 2 \times 2 \times 2 = 8$

NOTE :

For any non –zero real number 'a' we define $a^0 = 1$.

e.g.: Thus, $3^{\circ} = 1$, 5° , $\left(\frac{3}{4}\right)^{\circ} = 1$ and so on.

(ii) Negative Integral Power :

For any non-zero real number 'a' and positive integer 'n' we define $a^{-n} = \frac{1}{a^n}$.

Thus we have defined \mathbf{a}^n for all integral values of \mathbf{n} , positive, zero or negative. \mathbf{a}^n is called the \mathbf{n}^{th} power of \mathbf{a} .

(iii) Rational Exponents of a Real number

Principal of nth Root of a Positive Real Numbers :

If 'a' is a positive real number and 'n' is a **positive integer**, then the principal n^{th} root of a is the unique positive real number x such that $x^n = a$.

The principal nth root of a positive real number a is denoted by $a^{1/n}$ or \sqrt{a} .

* REMARK :

If 'a' is negative real number and 'n' is an **even positive** integer, then the principal n^{th} root of **a** is not defined, because an even power of a real number is always positive. Therefore $(-9)^{1/2}$ is a meaningless quantity, if we confine ourselves to the set of real number, only.

Law of Rational Exponents (b)

The following laws hold the rational exponents

 $a^m \times a^n = a^{m+n}$ (i) (ii) $a^m a^n = a^{m-n}$ $a^{-n} = \frac{1}{a^n}$ (iii) (iv) $(a^{m})^{n} = a^{mn}$ $a^{m/n} = (a^m)^{1/n} = (a^{1/n})^m$ i.e. $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$ (v) (vi) $(ab)^m = a^m b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ (vii) (viii) $a^{bn} = a^{b+b+b....n times}$

where a, b are positive real numbers and m, n are rational numbers.

Solved Examples

Example.33

Evaluate each of the following :

(i)
$$5^8 \div 5^3$$
 (ii) $\left(\frac{3}{4}\right)^{-3}$

Sol. Using the laws of indices, we have :

(i)
$$5^8 \div 5^3 = \frac{5^8}{5^3} = 5^{8-3} = 5^5 = 3125$$
. [$\because a^m a^n = a^{m-n}$]
(ii) $\left(\frac{3}{4}\right)^{-3} = \frac{1}{\left(\frac{3}{4}\right)^3} = \frac{1}{\frac{3^3}{4^3}} = \frac{1}{\frac{27}{64}} = \frac{64}{27}$ [$\because a^{-n} = \frac{1}{a^n}$]

64

Evaluate each of the following :

 $\left(\frac{1}{4}\right)$

(i)
$$\left(\frac{1}{2}\right)^5 \times \left(\frac{-2}{3}\right)^4 \times \left(\frac{3}{5}\right)^{-1}$$
 (ii) $\left(\frac{2}{3}\right)^3 \times \left(\frac{2}{5}\right)^{-3} \times \left(\frac{3}{5}\right)^2$

Sol. (i) We have,

$$\left(\frac{1}{2}\right)^{5} \times \left(\frac{-2}{3}\right)^{4} \times \left(\frac{3}{5}\right)^{-1} = \left(\frac{1}{2}\right)^{5} \times \left(\frac{-2}{3}\right)^{4} \times \left(\frac{1}{\frac{3}{5}}\right) = \frac{1^{5}}{2^{5}} \times \frac{(-2)^{4}}{3^{4}} \times \frac{5}{3}$$
$$= \frac{1 \times 16 \times 5}{32 \times 81 \times 3} = \frac{5}{2 \times 81 \times 3} = \frac{5}{486} .$$

(ii) We have,
$$\left(\frac{2}{3}\right)^{3} \times \left(\frac{2}{5}\right)^{-3} \times \left(\frac{3}{5}\right)^{2} = \frac{2^{3}}{3^{3}} \times \frac{1}{(2/5)^{3}} \times \frac{3^{2}}{5^{2}} = \frac{2^{3} \times 5^{3} \times 3^{2}}{3^{3} \times 2^{3} \times 5^{2}} = \frac{5}{3} .$$

Example.35

Simplify :

i)
$$\frac{(25)^{3/2} \times (243)^{3/5}}{(16)^{5/4} \times (8)^{4/3}}$$
 (ii) $\frac{16 \times 2^{n+1} - 4 \times 2^n}{16 \times 2^{n+2} - 2 \times 2^{n+2}}$

Sol. We have,

(i)
$$\frac{(25)^{3/2} \times (243)^{3/5}}{(16)^{5/4} \times (8)^{4/3}} = \frac{(5^2)^{3/2} \times (3^5)^{3/5}}{(2^4)^{5/4} \times (2^3)^{4/3}} = \frac{5^{2 \times 3/2} \times 3^{5 \times 3/5}}{2^{4 \times 5/4} \times 2^{3 \times 4/3}} = \frac{5^3 \times 3^3}{2^5 \times 2^4} = \frac{125 \times 27}{32 \times 16} = \frac{3375}{512}$$

(ii)
$$\frac{16 \times 2^{n+1} - 4 \times 2^n}{16 \times 2^{n+2} - 2 \times 2^{n+2}} = \frac{32 \times 2^n - 4 \times 2^n}{64 \times 2^n - 8 \times 2^n} = \frac{2^n (32 - 4)}{2^n (64 - 8)} = \frac{1}{2}.$$

Simplify .
$$\left(\frac{81}{16}\right)^{-3/4} \times \left[\left(\frac{25}{9}\right)^{-3/2} \div \left(\frac{5}{2}\right)^{-3}\right].$$

Sol. We have,

$$\left(\frac{81}{16}\right)^{-3/4} \times \left[\left(\frac{25}{9}\right)^{-3/2} \div \left(\frac{5}{2}\right)^{-3}\right] = \left(\frac{3^4}{2^4}\right)^{-3/4} \times \left[\left(\frac{5^2}{3^2}\right)^{-3/2} \div \left(\frac{5}{2}\right)^{-3}\right]$$

$$= \left[\left(\frac{3}{2}\right)^4\right]^{-3/4} \times \left[\left(\frac{5}{3}\right)^2\right]^{-3/2} \div \left[\left(\frac{5}{2}\right)^{-3}\right] = \left(\frac{3}{2}\right)^{4\times-3/4} \times \left[\left(\frac{5}{3}\right)^{2\times-3/2} \div \left(\frac{5}{2}\right)^{-3}\right]$$

$$= \left(\frac{3}{2}\right)^{-3} \times \left[\left(\frac{5}{3}\right)^{-3} \div \left(\frac{5}{2}\right)^{-3}\right] = \left(\frac{2}{3}\right)^3 \times \left[\left(\frac{3}{5}\right)^3 \div \left(\frac{2}{5}\right)^3\right] = \frac{2^3}{3^3} \times \left[\frac{3^3}{5^3} \div \frac{2^3}{5^3}\right] = \frac{2^3}{3^3} \times \left[\frac{3^3}{5^3} \div \frac{5^3}{2^3}\right] = 1.$$

Example.37

Sol.

Prove that :
$$\frac{x^{-1}}{x^{-1} + y^{-1}} + \frac{x^{-1}}{x^{-1} - y^{-1}} = \frac{2y^2}{y^2 - x^2}$$
.
 $\frac{x^{-1}}{x^{-1} + y^{-1}} + \frac{x^{-1}}{x^{-1} - y^{-1}} = \frac{\frac{1}{x}}{\frac{1}{x} + \frac{1}{y}} + \frac{\frac{1}{x}}{\frac{1}{x} - \frac{1}{y}} = \frac{\frac{1}{x}}{\frac{y + x}{xy}} + \frac{\frac{1}{x}}{\frac{y - x}{xy}}$.
 $= \frac{xy}{x(y + x)} + \frac{xy}{x(y - x)} = \frac{xy(y - x) + xy(y + x)}{x(y^2 - x^2)}$
 $= \frac{y(y - x) + y(y + x)}{y^2 - x^2} = \frac{y^2 - xy + y^2 + xy}{y^2 - x^2} = \frac{2y^2}{y^2 - x^2}$.

Example.38

Find the value of x :
$$\left(\frac{3}{5}\right)^{x} \left(\frac{5}{3}\right)^{2x} = \frac{125}{27}$$

Sol.
$$\left(\frac{3}{5}\right)^{x} \left(\frac{5}{3}\right)^{2x} = \frac{125}{27}$$

 $\left(\frac{5}{3}\right)^{-x} \left(\frac{5}{3}\right)^{2x} = \frac{125}{27}$
 $\left(\frac{5}{3}\right)^{2x-x} = \frac{125}{27}$.
 $\left(\frac{5}{3}\right)^{x} = \left(\frac{5}{3}\right)^{3}$

Because the base is same, so comparing the powers x = 3.

Example.39

If $25^{x-1} = 5^{2x-1} - 100$, find the value of x.

Sol. We have,

\Rightarrow	$25^{x-1} = 5^{2x-1} - 100$	\Rightarrow	$\left(5^2\right)^{x-1} = 5^{2x-1} - 100$
\Rightarrow	$5^{2x-2} - 5^{2x-1} = -100$	\Rightarrow	$5^{2x-2} - 5^{2x-2} \cdot 5^1 = -100$

\Rightarrow	$5^{2x-2}(1-5) = -100$	\Rightarrow	5^{2x-2} (-4) = -100
\Rightarrow	$5^{2x-2} = 5^2$	\Rightarrow	2x - 2 = 2
\Rightarrow	2x = 4	\Rightarrow	x = 2.

Assuming that x is a positive real number and a, b, c are rational numbers, show that :

$$\begin{pmatrix} \frac{x^{b}}{x^{c}} \end{pmatrix}^{a} \begin{pmatrix} \frac{x^{c}}{x^{a}} \end{pmatrix}^{b} \begin{pmatrix} \frac{x^{a}}{x^{b}} \end{pmatrix}^{c} = 1$$

$$\begin{pmatrix} \frac{x^{b}}{x^{c}} \end{pmatrix}^{a} \cdot \begin{pmatrix} \frac{x^{c}}{x^{a}} \end{pmatrix}^{b} \cdot \begin{pmatrix} \frac{x^{a}}{x^{b}} \end{pmatrix}^{c} = (x^{b-c})^{a} \cdot (x^{c-a})^{b} \cdot (x^{a-b})^{c} = x^{ab-ac} \cdot x^{bc-ba} \cdot x^{ac-bc}$$

$$= x^{ab-ac+bc-ba+ac-bc} = x^{0} = 1.$$

Sol.

			(Check You	ır Le	evel		
1.	Find the	e value of the foll	owing:					
	(i)	811/4	(ii)	64 ^{1/3}	(iii)	32 ^{3/5}	(iv)	27 ^{2/3}
2.	Simplify	y the following:						
	(i)	3 ^{1/3} . 3 ^{2/5}	(ii)	$\left(\frac{4}{9}\right)^{1/2}$	(iii)	22/3.32/3	(iv)	$(2^{1/3})^3$
3.	Simplifi	ed value of $2^n \times$	4 ⁿ × 8 ^{1-r}	1				
4.	Find x,	if $8^{x} = 16$						
5.	Find x,y	/,z if 15 ³ x12 ² x16	$\delta^4 = 2^x x^2$	3 ^y x5 ^z				
Answe	rs							
1.	(i)	3	(ii)	4	(iii)	8	(iv)	9
2.	(i)	3 ^{11/15}	(ii)	2/3	(iii)	6 ^{2/3}	(iv)	2
3.	8		4.	4/3	5.	x = 20, y = 5, z	= 3	

Exercise Board Level

TYPE (I) : VERY SHORT ANSWER TYPE QUESTIONS :

- 1. Find the product of any two irrational numbers.
- **2.** Find a rational number between $\sqrt{2}$ & $\sqrt{3}$.
- **3.** Find the value of 1.999... in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
- **4.** Find the number obtained on rationalising the denominator of $\frac{1}{\sqrt{7}-2}$.
- 5. After rationalising the denominator of $\frac{7}{3\sqrt{3}-2\sqrt{2}}$, what will be the denominator
- 6. Find the value of $\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}}$.
- 7. Simplify $\sqrt[4]{\sqrt[3]{2^2}}$.
- 8. Simplify $\sqrt[4]{(81)^{-2}}$.

TYPE (II) : SHORT ANSWER TYPE QUESTIONS :

9. If
$$\sqrt{2}$$
 = 1.4142, then find the value of $\sqrt{\frac{\sqrt{2}-2}{\sqrt{2}+2}}$

- **10.** Find the product $\sqrt[3]{2} \sqrt[4]{2} \sqrt[1]{32}$.
- **11.** Find the value of $(256)^{0.16} \times (256)^{0.09}$.
- 12. State whether the following statements are true or false? Justify your answer.
 - (i) $\frac{\sqrt{2}}{3}$ is a rational number.
 - (ii) There are infinitely many integers between any two integers.
 - (iii) Number of rational numbers between 15 and 18 is finite.
 - (iv) There are numbers which cannot be written in the form $\frac{p}{q}$, $q \neq 0$, p, q both are integers.
 - (v) The square of an irrational number is always rational.
 - (vi) $\frac{\sqrt{12}}{\sqrt{3}}$ is not a rational number as $\sqrt{12}$ and $\sqrt{3}$ are not integers.
 - (vii) $\frac{\sqrt{15}}{\sqrt{3}}$ is written in the form $\frac{p}{q}$, $q \neq 0$ and so it is a rational number.
- **13.** Locate $\sqrt{13}$ on the number line.
- **14.** Express $0.12\overline{3}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

15. Find the value of a in the following :
$$\frac{6}{3\sqrt{2}-2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$$

[02 MARKS EACH]

[01 MARK EACH]

16.	Simplify	$V : \left[5 \left(8^{\frac{1}{3}} + 27^{\frac{1}{3}} \right) \right]$	$\left \begin{array}{c} 3 \\ \end{array} \right ^{3} \left \begin{array}{c} 1 \\ 4 \end{array} \right $						
17.	Repres 7,7.2, -	ent the following $\frac{-3}{2}, \frac{-12}{5}$	g numbei	rs on the	e numbei	r line :			
TYPE (III) : LOI	NG ANSWER T	YPE QU	ESTION	IS :			[03 MA	RK EACH]
18.	Find thr	ee rational num	bers bet	ween					
	(i)	– 1 and – 2	(ii)	0.1 and	0.11	(iii)	$\frac{5}{7}$ and $\frac{6}{7}$	(iv)	$\frac{1}{4}$ and $\frac{1}{5}$
19.	Insert a	rational numbe	r and an	irrationa	al numbe	er betwee	en the following	:	
	(i)	2 and 3	(ii)	$\frac{1}{3}$ and	$\frac{1}{2}$	(iii)	$\frac{-2}{5}$ and $\frac{1}{2}$	(iv)	$\sqrt{2}$ and $\sqrt{3}$
	(v)	0.0001 and 0.0	01						
20.	Locate	$\sqrt{5}$, $\sqrt{10}$ and $\sqrt{2}$	$\sqrt{17}$ on t	he numl	ber line.				
21.	Repres (i)	ent geometricall $\sqrt{4.5}$	y the foll	owing n	umbers (ii)	on the nu $\sqrt{2.3}$	umber line :		
22.	Simplify	the following :					_		
	(i)	$\sqrt{45} - 3\sqrt{20} + 6$	4√5		(ii)	$\frac{\sqrt{24}}{8}$ +	$\frac{\sqrt{54}}{9}$	(iii)	∜12 × ∛6
	(iv)	$4\sqrt{28} \div 3\sqrt{7} \div \frac{3}{2}$	∛7		(v)	$3\sqrt{3} + 2$	$2\sqrt{27} + \frac{7}{\sqrt{3}}$	(vi)	$\left(\sqrt{3}-\sqrt{2}\right)^2$
	(vii)	4 <mark>√81 – 8∛216</mark> +	15∜32 +	- √225	(viii)	$\frac{3}{\sqrt{8}} + \frac{1}{\sqrt{8}}$	1 2	(ix)	$\frac{2\sqrt{3}}{3} - \frac{\sqrt{3}}{6}$
23.	Rationa	lise the denomi	nator of	the follo	wing :		_		
	(i)	$\frac{2}{3\sqrt{3}}$	(ii)	$\frac{\sqrt{40}}{\sqrt{3}}$		(iii)	$\frac{3+\sqrt{2}}{4\sqrt{2}}$	(iv)	$\frac{16}{\sqrt{41}-5}$
	(v)	$\frac{2+\sqrt{3}}{2-\sqrt{3}}$	(vi)	$\frac{\sqrt{6}}{\sqrt{2}+\sqrt{2}}$	3	(vii)	$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$	(viii)	$\frac{3\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
	(ix)	$\frac{4\sqrt{3}+5\sqrt{2}}{\sqrt{48}+\sqrt{18}}$							
24.	Find the	e values of a an	d b in ea	ch of the	e followir	ng :	_		
	(i)	$\frac{5+2\sqrt{3}}{7+4\sqrt{3}}$ = a -	6√3			(ii)	$\frac{3-\sqrt{5}}{3+2\sqrt{5}} = a\sqrt{5}$	$\frac{19}{5} - \frac{19}{11}$	
	(iii)	$\frac{\sqrt{2} + \sqrt{3}}{3\sqrt{2} - 2\sqrt{3}} =$	2 – b√6			(iv)	$\frac{7+\sqrt{5}}{7-\sqrt{5}} - \frac{7-\sqrt{5}}{7+\sqrt{5}}$	5 5 5 5	75b I1

- **25.** If a = 2 + $\sqrt{3}$, then find the value of a $\frac{1}{a}$.
- **26.** If $a = 5 + 2\sqrt{6}$ and $b = \frac{1}{a}$, then what will be the value of $a^2 + b^2$?

27. If
$$\sqrt{2} = 1.414$$
, $\sqrt{3} = 1.732$, then find the value of $\frac{4}{3\sqrt{3} - 2\sqrt{2}} + \frac{3}{3\sqrt{3} + 2\sqrt{2}}$.

TYPE (IV): VERY LONG ANSWER TYPE QUESTIONS

[04 MARK EACH]

- **28.** Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}$ = 1.414, $\sqrt{3}$ =1.732 and $\sqrt{5}$ = 2.236, upto three places of decimal.
 - (i) $\frac{4}{\sqrt{3}}$ (ii) $\frac{6}{\sqrt{6}}$ (iii) $\frac{\sqrt{10} \sqrt{5}}{2}$ (iv) $\frac{\sqrt{2}}{2 + \sqrt{2}}$ (v) $\frac{1}{\sqrt{3} + \sqrt{2}}$
- **29.** Simplify :

(i)
$$(1^{3} + 2^{3} + 3^{3})^{\frac{1}{2}}$$
 (ii) $(\frac{3}{5})^{4} (\frac{8}{5})^{-12} (\frac{32}{5})^{6}$ (iii) $(\frac{1}{27})^{\frac{-2}{3}}$
(iv) $\left[\left((625)^{-\frac{1}{2}} \right)^{-\frac{1}{4}} \right]^{2}$ (v) $\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{3^{\frac{1}{6}} \times 3^{-\frac{2}{3}}}$ (vi) $64^{-\frac{1}{3}} \left[64^{\frac{1}{3}} - 64^{\frac{2}{3}} \right]$
(vii) $\frac{8^{\frac{1}{3}} \times 16^{\frac{1}{3}}}{32^{-\frac{1}{3}}}$

30. If
$$a = \frac{3 + \sqrt{5}}{2}$$
, then find the value of $a^2 + \frac{1}{a^2}$.

31. If $x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, then find the value of $x^2 + y^2$.

32. Express $0.6 + 0.\overline{7} + 0.4\overline{7}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

33. Simplify:
$$\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}$$

34. Find the value of
$$\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$$

Exercise-1

SUBJECTIVE QUESTIONS

Subjective Easy, only learning value problems

Section (A) : Introduction to number system & rational numbers

A.1	Expre	ess $\frac{2}{11}$ in dec	imal form.					
A.2	Give three rational numbers between – 2 and – 1.							
A.3	Find	five rational n	umbers betv	ween $\frac{3}{5}$ and $\frac{3}{5}$	4 5			
A.4	Expre	ess the followi	ng in the fo	rm of p/q.				
	(i)	0.37	(ii)	43.54	(iii)	5.3245	(iv)	4.62Ī
Secti	on (B) : Irrationa	al numbe	rs				
B.1	Write	three irration	al number b	etween √3 a	nd $\sqrt{5}$.			

B.2 Find three different irrational numbers between $\frac{5}{7}$ and $\frac{9}{11}$.

- **B.3** Give one example where the product of two different irrational number is rational.
- **B.4** Prove that $7 + \sqrt{3}$ is an irrational number.
- **B.5** Represent $\sqrt{4}$, $\sqrt{5}$, $\sqrt{10}$ on the real number line.
- **B.6** Represent $\sqrt{8.3}$ on the number line.

Section (C) : Surds and their application

- **C.1** Multiply $3\sqrt{28}$ by $2\sqrt{7}$
- **C.2** Find the value of $2\sqrt{5} + 3\sqrt{5}$.
- C.3 What is the square root of the number 0.04 in fraction form?

C.4 Simplify the expression
$$\frac{3}{\sqrt{48} - \sqrt{75}}$$

C.5 Find the value of $\frac{6}{\sqrt{5}-\sqrt{3}}$, if being given that $\sqrt{3} = 1.732$ and $\sqrt{5} = 2.236$.

C.6 Multiply
$$\sqrt{27a^3b^2c^4} \times \sqrt[3]{128a^7b^9c^2} \times \sqrt[6]{729ab^{12}c^2}$$
.

C.7 Simplify :

(i)
$$\frac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}} + \frac{2\sqrt{3}}{\sqrt{6}+2}$$
 (ii) $\frac{7\sqrt{3}-5\sqrt{2}}{\sqrt{48}+\sqrt{18}}$

C.8 Find the value of a and b :

(i)
$$\frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}} = a - b\sqrt{77}$$
 (ii) $\frac{3 + \sqrt{6}}{\sqrt{3} + \sqrt{2}} = a + b\sqrt{3}$

C.9 If
$$x = \frac{\sqrt{3} + 1}{2}$$
, find the value of $4x^3 + 2x^2 - 8x + 7$.

C.10 Prove that :
$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5$$

C.11 Arrange the following surds in ascending order of magnitude : $\sqrt[3]{2}$, $\sqrt[6]{3}$, $\sqrt[9]{4}$.

C.12 If
$$x = 2 + \sqrt{3}$$
, find the value of $x^3 + \frac{1}{x^3}$.

Section (D) : Exponents

D.1 Find the value of $x : 5^{x-2} \times 3^{2x-3} = 135$.

D.2 Evaluate :
$$\frac{3^{-3} \times 6^2 \times \sqrt{98}}{5^2 \times \sqrt[3]{\frac{1}{25}} \times (15)^{-4/3} \times 3^{1/3}}.$$

D.3 Simplify:
$$\frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{a-b}+x^{c-b}} + \frac{1}{1+x^{a-c}+x^{b-c}}$$
.

D.4 If
$$\frac{9^n \times 3^2 \times \left[3^{-n/2}\right]^{-2} - (27)^n}{3^{3m} \times 2^3} = \frac{1}{27}$$
, then prove that $m - n = 1$.

D.5 If $a^x = b^y = c^z$ and $b^2 = ac$, then prove that $\frac{1}{x} + \frac{1}{z} = \frac{2}{y}$.

OBJECTIVE QUESTIONS

Single Choice Objective, straight concept/formula oriented

Section (A) : Introduction to number system & rational numbers

A.1	The decimal representation of $\frac{27}{400}$ is :					
	(A) Terminating(C) Non terminating non recurring	(B) Non terminating recurring(D) None of these				
A.2	2.234 is : (A) Non-terminating only (C) Non-terminating and repeating	(B) Non-repeating only (D) Non-terminating and non-repeating				
A.3	How many rational numbers exist between a	any two distinct rational numbers?				

(A) 2 (B) 3 (C) 11 (D) Infinite

A.4	The rational form of 2	.74 35 is :		
	(A) $\frac{27161}{9999}$	(B) $\frac{27}{99}$	(C) $\frac{27161}{9900}$	(D) $\frac{27161}{9000}$
Secti	on (B) : Irrational n	umbers		
B.1	Which of the following (A) $\sqrt{16} - 4$	number is irrational ? (B) $(3 - \sqrt{3}) (3 + \sqrt{3})$	(C) √5 + 3	$(D) - \sqrt{25}$
B.2	The decimal expansior (A) Finite decimal (C) Non-terminating re-	n of $\sqrt{2}$ is : curring	(B) 1.4121 (D) Non - terminating n	on recurring
B.3	The product of a non - <i>:</i> (A) Irrational number	zero rational number with (B) Rational number	an irrational number is : (C) Whole number	(D) Natural number
B.4	The number $\frac{3-\sqrt{3}}{3+\sqrt{3}}$ is	:		
	(A) rational	(B) irrational	(C) both	(D) can't say
B.5	Every point on a numb (A) A natural number	er line represents : (B) A real number	(C) A rational number	(D) A irrational number
B.6	A rational number lying	g between $\sqrt{2}$ and $\sqrt{3}$ i	is :	
	$(A) \ \frac{\sqrt{2} + \sqrt{3}}{2}$	(B) √6	(C) 1.6	(D) 1.9
Secti	on (C) : Surds and	their application		
C.1	If $\sqrt{3}$ = 1.732 and $\sqrt{2}$	= 1.414, the value of $\frac{1}{\sqrt{3}}$	$\frac{1}{\overline{3}-\sqrt{2}}$ is :	
	(A) 0.318	(B) 3.146	(C) $\frac{1}{3.146}$	(D) $\sqrt{1.732} - \sqrt{1.414}$
C.2	If $x = 2 + \sqrt{3}$, then $\left(x\right)$	$\left(x+\frac{1}{x}\right)$ equals to :		
	(A) −2√3	(B) 2	(C) 4	(D) 4 −2√3
C.3	The exponential form c	of $\sqrt{\sqrt{2}\sqrt{3}}$ is :		
	(A) 6 ^{1/2}	(B) 6 ^{1/3}	(C) 6 ^{1/4}	(D) 6
C.4	The simplest rationalis	ation factor of $\sqrt{50}$ is :		
	(A) 5	(B) √2	(C) 50	(D) √50
C.5	If $x = 3 + \sqrt{8}$ and $y = 3$	$3 - \sqrt{8}$ then $\frac{1}{x^2} + \frac{1}{y^2} =$		
	(A) – 34	(B) 34	(C) 12√8	(D) −12√8

C.6	If $\frac{3+\sqrt{7}}{3-\sqrt{7}} = a+b\sqrt{7}$ then (a, b) =					
	(A) (8, - 3)	(B) (- 8, - 3)	(C) (- 8, 3)	(D) (8, 3)		
C.7	Which one is greatest in	n the following :				
	(A) √2	(B) ∛ <u>3</u>	(C) ∛4	(D) ∛2		
C.8	The value of $\sqrt[5]{(32)^{-3}}$ is	s :				
	(A) 1/8	(B) 1/16	(C) 1/32	(D) None of these		
C.9	If $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$	$=rac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ the value of x	$x^{2} + xy + y^{2}$ is :			
	(A) 99	(B) 100	(C) 1	(D) 0		
C.10	Simplify : $\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{2}{\sqrt{3}}$	$\frac{1}{3+\sqrt{2}} - \frac{3}{\sqrt{5}+\sqrt{2}}$.				
	(A) 1	(B) 0	(C) 10	(D) 100		
C.11	Which of the following i	s smallest :				
	(A) ∜5	(B) ∜4	(C) $\sqrt{4}$	(D) √3		
C.12	The product of $\sqrt{3}$ and	∛5 is:				
	(A) ∜375	(B) ⁶ √675	(C) ∜575	(D) ⁶ √475		
C.13	The value of $\sqrt{20} \times \sqrt{5}$	is :				
	(A) 10	(B) 2√5	(C) 20√5	(D) 4√5		
C.14	$\sqrt[3]{\frac{54}{250}}$ equals :					
	(A) $\frac{9}{25}$	(B) $\frac{3}{5}$	(C) $\frac{27}{125}$	(D) $\frac{\sqrt[3]{2}}{5}$		
Section	on (D) : Exponents					
D.1	The value of x, if 5^{x-3} . (A) 1	3 ^{2x-8} = 225, is : (B) 2	(C) 3	(D) 5		
D-2.	$\frac{3^{5x} \times (81)^2 \times 6561}{3^{2x}} = 3^7,$	then				
	(A) $x = -2$	(B) x = -3	(C) x = – 1	(D) x = 0		
D-3.	$3^{n} \times 9^{n} \times 27^{1-n} =$					
	(A) 9	(B) 27	(C) 3	(D) $\frac{1}{3}$		
D-4.	(3 ⁻¹ + 5 ⁻¹ + 2 ⁻¹) ⁻¹ =					
	(A) $\frac{29}{30}$	(B) $\frac{31}{29}$	(C) $\frac{30}{31}$	(D) None		
D-5.	If $2^x = 4^y = 8^z$, then find (A) 1 : 2 : 3	x : y : z. (B) 3 : 2 : 1	(C) 2 : 3 : 1	(D) 6 : 3 : 2		

Exercise-2

	OBJECTIVE QUESTIONS						
1.	The digit at the 100 th p	lace in the decimal repre	sentation of $\frac{6}{7}$, is :				
	(A) 1	(B) 2	(C) 4	(D) 5			
2.	xy is a number that is ((A) 11	divided by ab where xy < (B) 33	ab and gives a result 0.x (C) 99	xyxyxy then ab equals : (D) 66			
3.	When the repeating d numerator and denom	lecimal 0.45454545 inator is :	is written in simplest fra	ctional form, the sum of the			
	(A) 5	(B) 11	(C) 55	(D) 16			
4.	If $\sqrt{9 - (n - 2)^2}$ is a real	al number, then the numb	per of integral values of n	is :			
	(A) 3	(B) 5	(C) 7	(D) Infinitely many			
5.	If x is a positive intege	r less than 100, then the	number of x which make	$\sqrt{1+2+3+4+x}$ an integer			
	is: (A) 6	(B) 7	(C) 8	(D) 9			
6.	If $\frac{\sqrt{954} + \sqrt{\sqrt{484} + \sqrt{7}}}{0.00155}$	$\frac{04 + \sqrt{625}}{(0.009)^2 \times 10^{-2}} = \frac{\sqrt{0.0004}}{(0.009)^2 \times 10^{-2}}$. Then approximate value	e of x is			
	(A) 123.456	(B) 0.01234	(C) 12.34	(D) 12345.67			
7.	If n is a perfect square	, then the next perfect sq	uare greater than n is :				
	(A) n ² + 1	(B) n² + n	(C) n + 2 √n + 1	(D) 2n + 1			
8.	If $x + x + \sqrt{x + \sqrt{x + \dots + $	 = 2 then x equals					
	(A) $2 - \sqrt{2}$	(B) $2 + \sqrt{2}$	(C) $2 \pm \sqrt{2}$	(D) $2 - \sqrt{3}$			
9.	The four digit number Another number N has (A) 2	2652 is such that any t s this same property, is 1 (B) 3	wo consecutive digits fro 00 digits long, and begins (C) 6	om it make a multiple of 13. s in a 9. The last digit of N, is (D) 9			
10.	The expression						
	$\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2008}\right)$	$\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2007}\right)$	$-\left(1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{200}\right)$	$\frac{1}{18}\left(\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{2007}\right)$			
	(A) 0	(B) <u>1</u> 2007	(C) $\frac{1}{2008}$	(D) $\frac{2}{2007}$			
11.	lf1	$\frac{x}{x}$, the	n x is equal to :	2001			
	$\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$	$\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$					
	x 2 x 2 x (A) 70	2 x 2 (B) 72	(C) 36	(D) 68			

Number System

12.	The value of $\left(1-\frac{1}{3}\right)^2 \left(\frac{1}{3}\right)^2$	$1-\frac{1}{4}\Big)^2\left(1-\frac{1}{5}\right)^2$	$\left(1-\frac{1}{n}\right)^2$ is equal to :	
	(A) $\left(\frac{1}{n}\right)^2$	(B) $\left(\frac{2}{n}\right)^2$	(C) $\left(\frac{3}{n}\right)^2$	(D) $\left(\frac{4}{n}\right)^2$
13.	If x = $(7 + 4\sqrt{3})$, then the function of th	he value of $\sqrt{x} + \frac{1}{\sqrt{x}}$ is	91	
	(A) 8	(B) 6	(C) 5	(D) 4
14.	If $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{2} + \sqrt{2}}$ and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{2} + \sqrt{2}}$	$=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{2}}$ the value of x	$x^{2} + xy + y^{2}$ is :	
	√3 + √2 (A) 99	(B) 100	(C) 1	(D) 0
15.	The value of the expres	ssion $\sqrt{\frac{1}{\sqrt{2}+1}} + \frac{1}{\sqrt{3}+\sqrt{2}}$	$+\frac{1}{\sqrt{4}+\sqrt{3}}+$ upto 99	9 terms is equal to
	(A) 9	(B) 3	(C) 1	(D) 0
16.	The simplest rationalising	ng factor of $\sqrt[4]{48}$ is :		
	(A) ∜9	(B) ∜ <u>27</u>	(C) ∛ 9	(D) None of these
17.	Let r and s be integer. T	The $\frac{6^{r+s} \times 12^{r-s}}{8^r \times 9^{r+2s}}$ is an integration	teger if :	
	(A) r + s \leq 0	(B) $s \le 0$	(C) $r \leq 0$	(D) $r \ge s$
18.	If $2^a > 4^c$ and $3^b > 9^a$ and	d a, b, c all positive, ther	1:	
	(A) c < a < b	(B) b < c < a	(C) c < b < a	(D) a < b < c
19.	$\int \int 2^{2008} - 2^{2007} - 2^{2006} + 2^{2}$	$2005 = k \cdot 2^{2005}$ then the val	ue of k is equal to :	
	(A) 2	(B) 3	(C) 4	(D) 5
20.	If $2^x = 3^y = 6^{-z}$, then is e	equal to :	2	4
	(A) 0	(B) 1	(C) $\frac{3}{2}$	$(D) - \frac{1}{2}$
21.	If $4^{x} - 4^{x-1} = 24$, then the	e value of (2x) ^x equals :		
	(A) 5√5	(B) √5	(C) 25√5	(D) 25
22.	$2^{73} - 2^{72} - 2^{71}$ is the same	me as :		
	(A) 2 ⁶⁹	(B) 2 ⁷⁰	(C) 2 ⁷¹	(D) 2 ⁷²
23.	If $x = -0.5$ then which o	one of the following has t	he smallest value :	
	(A) $2^{\frac{1}{x}}$	(B) $\frac{1}{x}$	(C) 2 ^x	(D) $\frac{1}{\sqrt{-x}}$

Exercise-3 NTSE PROBLEMS (PREVIOUS YEARS) If $2^x = 4^y = 8^z$ and $\frac{1}{2x} + \frac{1}{4y} + \frac{1}{6z} = \frac{24}{7}$, then the value of z is (Rajasthan NTSE Stage-1 2005) 1. (A) $\frac{7}{16}$ (B) $\frac{7}{32}$ (D) $\frac{7}{64}$ (C) $\frac{7}{49}$ If $\left(\frac{a}{b}\right)^{x-1} = \left(\frac{b}{a}\right)^{x-3}$ then the value of x is -2. (Rajasthan NTSE Stage-1 2005) (C) 3 (D) 4 (B) 2 If $a^x = b$, $b^y = c$ and $c^z = a$, then value of xyz is (Rajasthan NTSE Stage-1 2007) 3. (A) 1 (B) 0 (C) -1 (D) a + b + c. An equivalent expression of $\frac{5}{\sqrt{3}-\sqrt{5}}$ after rationlizing the denominator is 4. (Rajasthan NTSE Stage-1 2013) (A) $\left(\frac{5}{2}\right)(\sqrt{3} + \sqrt{5})$ (B) $\left(-\frac{5}{2}\right)(\sqrt{3} + \sqrt{5})$ (C) $\left(\frac{5}{2}\right)(\sqrt{3} - \sqrt{5})$ (D) $\left(-\frac{5}{2}\right)(\sqrt{3} - \sqrt{5})$ Value of $\frac{2^{100}}{2}$ is : 5. (Rajasthan NTSE Stage-1 2013) (A) 1 (B) 50¹⁰⁰ (D) 299 (C) 250 If $x^{p^q} = (x^p)^q$, then p =6. (Haryana NTSE Stage-1 2013) (A) a⁺ (D) $a^{\frac{1}{q-1}}$ (B) 1 (C) q^q If $a^x = b$, $b^y = c$ and $c^z = a$, then the value of $x^2y^2z^2$ is 7. [Madhya Pradesh NTSE Stage-1 2013] (D) $\frac{1}{a^2b^2c^2}$ (A) $a^2b^2c^2$ (C) 4 (B) 1 8. [Gujarat NTSE Stage-1 2013] H.C.F. (28, 35, 91) = (A) 1 (C) 7 (B) 5 (D) 14 Which of the following time expressions is right for the fraction $\frac{1}{4}$? 9. [Gujarat NTSE Stage-1 2014] (A) 15 minute (C) 45 minute (B) 30 minute (D) 10 minute 10. Which real number lies between 2 and 2.5 (Chandigarh NTSE Stage-1 2014) (C) ∛7 (D) ∛9 (A) √11 (B) √8 11. Of the following four numbers the largest is : (Harayana NTSE Stage-1 2014) (C) (17)¹⁰⁵ (A) 3210 (B) 7¹⁴⁰ (D) (31)84 The rationalizing factor of $\sqrt[n]{\frac{a}{b}}$ is (Karnataka NTSE Stage-1 2014) 12. (D) $\sqrt[n]{\frac{a^{n+1}}{b^{n+1}}}$ (A) ab $\sqrt[n]{\frac{a}{b}}$ (B) <u>n</u>/<u>a</u> (C) $\sqrt[n]{\frac{a^{n-1}}{b^{n-1}}}$

10.	In a number is divided	by 6, the remainder is 3 t	hen what will be the	he remainder when the square of
	the same number is div	rided by 6 again	[Uttar P	radesh NTSE Stage-1 2014]
	(A) U	(B) I	(C) 2	(D) 3
14.	If $x = (3 + \sqrt{8})$, then $\left(x + \sqrt{8}\right)$	$(x^2 + \frac{1}{x^2})$ will be-	[Uttar P	radesh NTSE Stage-1 2014]
	(A) 38	(B) 36	(C) 34	(D) 30
15.	If $\left(\frac{a}{b}\right)^{x-1} = \left(\frac{b}{a}\right)^{x-3}$ then	the value of x will be-	[Uttar P	radesh NTSE Stage-1 2014]
	(A) –1	(B) 1	(C) 2	(D) 3
16.	The simplest rationalizi	ng factor of $\sqrt[3]{72}$ is	[Madhya	a Pradesh NTSE Stage-1 2014]
	(A) $2^{\frac{1}{3}}$	(B) 3 ^{1/3}	(C) $3^{\frac{1}{2}}$	(D) 2 ¹ / ₂
	$\left(\begin{array}{c} b \end{array} \right) \frac{1}{bc}$	$\left(\begin{array}{c} 1\\ 1\\ 1\end{array}\right) \left(\begin{array}{c} 1\\ 1\end{array}\right) \left(\begin{array}{c} 1\\ 1\\ 1\end{array}\right) \left(\begin{array}{c} 1\\ 1\\ 1\end{array}\right) \left(\begin{array}{c} 1\\ 1\\ 1\end{array}\right) \left(\begin{array}{c} 1\\ 1\end{array}\right) \left(\begin{array}{c} 1\\ 1\\ 1\end{array}\right) \left(\begin{array}{c} 1\\ 1\\ 1\end{array}\right) \left(\begin{array}{c} $		
17.	The value of $\left(\frac{\mathbf{x}^{*}}{\mathbf{x}^{c}}\right)^{bc}$.	$\left(\frac{x}{x^{a}}\right)^{ca}$. $\left(\frac{x}{x^{b}}\right)^{ab}$ on simple	olifying is : (Ra	ajasthan NTSE Stage-1 2015)
	(A) x	(B) 1/x	(C) 1	(D) – 1
18.	If x = 2 + $\sqrt{3}$ and xy =	1 then $\frac{x}{\sqrt{2} + \sqrt{x}} + \frac{y}{\sqrt{2}}$	<u>√y</u> =	(Bihar NTSE Stage-1 2015)
	(A) √2	(B) √3	(C) 1	(D) None of these
19.	Simple form of $\frac{\sqrt{5}-2}{\sqrt{5}+2}$	+ $\frac{\sqrt{5}+2}{\sqrt{5}-2}$ is	[Madhy	a Pradesh NTSE Stage-1 2015]
	$\sqrt{3} + 2$	$\sqrt{3}$		
	(A) 9 + $\sqrt{5}$	(B) 18	(C) 18 + $\sqrt{5}$	(D) 9
20.	(A) 9 + $\sqrt{5}$ If the L.C.M. of two nur	(B) 18 nbers is 2520 and H.C.F	(C) 18 + √5 . is 12.lts one nur	(D) 9 nber is 504, then the other number
20.	(A) 9 + $\sqrt{5}$ If the L.C.M. of two nur will be (A) 50	(B) 18 nbers is 2520 and H.C.F (B) 65	(C) 18 + √5 . is 12.lts one nur [Madhy a (C) 40	(D) 9 nber is 504, then the other number a Pradesh NTSE Stage-1 2015] (D) 60
20. 21.	(A) 9 + $\sqrt{5}$ If the L.C.M. of two nur will be (A) 50 Which number is the in	(B) 18 nbers is 2520 and H.C.F (B) 65 verse of the opposite of ·	(C) 18 + √5 . is 12.Its one nur [Madhy a (C) 40 - 5/8 ?	(D) 9 nber is 504, then the other number a Pradesh NTSE Stage-1 2015] (D) 60 [Gujarat NTSE Stage-1 2015]
20. 21.	(A) 9 + $\sqrt{5}$ If the L.C.M. of two nur will be (A) 50 Which number is the in (A) $1\frac{5}{8}$	(B) 18 (B) 18 (B) 65 (B) 65 verse of the opposite of \cdot (B) 1 $\frac{3}{5}$	(C) $18 + \sqrt{5}$ is 12.Its one nur [Madhya (C) 40 $-\frac{5}{8}$? (C) $2\frac{2}{5}$	(D) 9 mber is 504, then the other number a Pradesh NTSE Stage-1 2015] (D) 60 [Gujarat NTSE Stage-1 2015] (D) $-\frac{8}{5}$
20. 21. 22	(A) 9 + $\sqrt{5}$ If the L.C.M. of two nur will be (A) 50 Which number is the in (A) $1\frac{5}{8}$ If $x = \frac{4}{16} + \frac{4}{625}$ th	(B) 18 (B) 18 (B) 65 (B) 65 (B) $1\frac{3}{5}$ en what is x = 2	(C) $18 + \sqrt{5}$ is 12.1ts one nur [Madhya (C) 40 $-\frac{5}{8}$? (C) $2\frac{2}{5}$	(D) 9 mber is 504, then the other number a Pradesh NTSE Stage-1 2015] (D) 60 [Gujarat NTSE Stage-1 2015] (D) $-\frac{8}{5}$
20. 21. 22.	(A) 9 + $\sqrt{5}$ If the L.C.M. of two num will be (A) 50 Which number is the in (A) $1\frac{5}{8}$ If $x = \sqrt[4]{16} + \sqrt[4]{625}$, th (A) 7	(B) 18 (B) 18 (B) 65 (B) 65 (B) $1\frac{3}{5}$ en what is x = ? (B) 29	(C) $18 + \sqrt{5}$ is 12.1ts one nur [Madhya (C) 40 $-\frac{5}{8}$? (C) $2\frac{2}{5}$ (C) 12	(D) 9 mber is 504, then the other number a Pradesh NTSE Stage-1 2015] (D) 60 [Gujarat NTSE Stage-1 2015] (D) $-\frac{8}{5}$ [Gujarat NTSE Stage-1 2015] (D) 5
20. 21. 22. 23.	(A) 9 + $\sqrt{5}$ If the L.C.M. of two num will be (A) 50 Which number is the in (A) $1\frac{5}{8}$ If $x = \sqrt[4]{16} + \sqrt[4]{625}$, th (A) 7 The simplified value of	(B) 18 (B) 18 (B) 65 (B) 65 verse of the opposite of (B) $1\frac{3}{5}$ en what is x = ? (B) 29 $\frac{1}{\sqrt{2} + \sqrt{3} - \sqrt{5}} + \frac{1}{\sqrt{2} - \sqrt{5}}$	(C) $18 + \sqrt{5}$ is 12.1ts one nur [Madhya (C) 40 $-\frac{5}{8}$? (C) $2\frac{2}{5}$ (C) 12 $\frac{1}{3-\sqrt{5}}$ is	(D) 9 mber is 504, then the other number a Pradesh NTSE Stage-1 2015] (D) 60 [Gujarat NTSE Stage-1 2015] (D) $-\frac{8}{5}$ [Gujarat NTSE Stage-1 2015] (D) 5 [Delhi NTSE Stage-1 2015]
20. 21. 22. 23.	(A) $9 + \sqrt{5}$ If the L.C.M. of two num will be (A) 50 Which number is the in (A) $1\frac{5}{8}$ If $x = \sqrt[4]{16} + \sqrt[4]{625}$, th (A) 7 The simplified value of (A) 1	(B) 18 (B) 18 (B) 65 (B) 65 verse of the opposite of (B) $1\frac{3}{5}$ en what is x = ? (B) 29 $\frac{1}{\sqrt{2} + \sqrt{3} - \sqrt{5}} + \frac{1}{\sqrt{2} - \sqrt{5}}$ (B) 0	(C) $18 + \sqrt{5}$ is 12.1ts one nur [Madhya (C) 40 $-\frac{5}{8}$? (C) $2\frac{2}{5}$ (C) 12 $\frac{1}{3} - \sqrt{5}$ is (C) $\sqrt{2}$	(D) 9 mber is 504, then the other number a Pradesh NTSE Stage-1 2015] (D) 60 [Gujarat NTSE Stage-1 2015] (D) $-\frac{8}{5}$ [Gujarat NTSE Stage-1 2015] (D) 5 [Delhi NTSE Stage-1 2015] (D) $\frac{1}{\sqrt{2}}$
20. 21. 22. 23. 24.	(A) 9 + $\sqrt{5}$ If the L.C.M. of two num will be (A) 50 Which number is the ind (A) $1\frac{5}{8}$ If x = $\sqrt[4]{16}$ + $\sqrt[4]{625}$, the (A) 7 The simplified value of (A) 1 Raj wanted to type the	(B) 18 (B) 18 (B) 65 (B) 65 verse of the opposite of (B) $1\frac{3}{5}$ en what is x = ? (B) 29 $\frac{1}{\sqrt{2} + \sqrt{3} - \sqrt{5}} + \frac{1}{\sqrt{2} - \sqrt{5}}$ (B) 0 first 200 natural numbers	(C) $18 + \sqrt{5}$ is 12. Its one nur [Madhy: (C) 40 $-\frac{5}{8}$? (C) $2\frac{2}{5}$ (C) 12 $\frac{1}{3-\sqrt{5}}$ is (C) $\sqrt{2}$ s, how many times	(D) 9 mber is 504, then the other number a Pradesh NTSE Stage-1 2015] (D) 60 [Gujarat NTSE Stage-1 2015] (D) $-\frac{8}{5}$ [Gujarat NTSE Stage-1 2015] (D) 5 [Delhi NTSE Stage-1 2015] (D) $\frac{1}{\sqrt{2}}$ is does he have to press the keys

25.	Which is the greatest a	mong $\sqrt[6]{100}$, $\sqrt[3]{12}$ and \sim	$\sqrt{3}$	[Delhi NTSE Stage-1 2015]
	(A) √3	(B) ∜100	(C) ∛12	(D) cannot be determined
26.	Among the numbers 2 ² (A) 2 ²⁵⁰	⁵⁰ , 3 ²⁰⁰ , 4 ¹⁵⁰ and 5 ¹⁰⁰ , the g (B) 3 ²⁰⁰	greatest is (West (C) 4 ¹⁵⁰	Bengal NTSE Stage-1 2016) (D) 5 ¹⁰⁰
27.	What is the square root	t of 9 + 2√14 ?		(Bihar NTSE Stage-1 2016)
	(A) 1 + 2√2	(B) $\sqrt{2} + \sqrt{7}$	(C) $\sqrt{3} + \sqrt{6}$	(D) $\sqrt{2} + \sqrt{5}$
28.	$\sqrt[3]{1-\frac{127}{343}}$ is equal to			(Bihar NTSE Stage-1 2016)
	(A) $\frac{5}{9}$	(B) 1- 1 7	(C) $\frac{4}{7}$	(D) 1- ² / ₇
29.	What is the value of 2.	.6-1.9 ?	(Bih	ar NTSE Stage-1 2016)
	(A) 0. 6	(B) 0. <u>9</u>	(C) 0.7	(D) 0.7
30.	An equivalent expression	on of $\frac{5}{7+4\sqrt{5}}$ after ratio	nalizing the denomina	tor is
	_	_	[Guj	arat NTSE Stage-1 2016]
	(A) $\frac{20\sqrt{5}-35}{31}$	(B) $\frac{20\sqrt{5}-35}{129}$	(C) $\frac{35-20\sqrt{5}}{31}$	(D) $\frac{35-20\sqrt{5}}{121}$
31.	Four positive integers decreased by 4. the th numbers then four origi (A) 16, 24, 5, 80	sum to 125. If the first hird is multiplied by 4 an inal integers are (B) 8, 22, 38, 57	of these numbers is i ad the fourth is divided [Dell (C) 7, 19, 46, 53	ncreased by 4, the second is d by 4 then we get four equal hi NTSE Stage-1 2016] (D) 12, 28, 40, 45
32.	If $a = \sqrt{6} + \sqrt{5}$; , $b = \sqrt{6} - (A) 36$	$\sqrt{5}$ the find the value of 2 (B) 37	2a ² – 5ab + 2b ² [Mahara (C) 39	shtra NTSE Stage-1 2016] (D) 41
33	$\sqrt{m^4n^4} \times \sqrt[6]{m^2n^2} \times \sqrt[3]{m^2n^2} =$	$=(mn)^{k}$ then find the value	le of k [Maharasht r	a NTSF Stage-1 20171
	(A) 6	(B) 3	(C) 2	(D) 1

Answer Key **Exercise Board Level** TYPE (I) $\frac{\sqrt{7}+2}{3}$ 1. 1.5 2 4. Rational or Irrational 2. 3. $7(3\sqrt{3}+2\sqrt{2})$ 1 9 2⁶ 5. 2 7. 8. 6. 19 TYPE (II) 0.4142 9. 10. 2 11. 4 12. (i) False (ii) False (iii) False (iv) True (v) False (vi) False (vii) False 37 **15.** a = -2 5 13. OA = 2 units and AB = 3 units. **14.** 16. 300 TYPE (III) 18. (i) - 1.1, - 1.2, - 1.3 (ii) 0.101, 0.102, 0.103 $\frac{51}{70}$, $\frac{52}{70}$, $\frac{53}{70}$ $\frac{17}{80}, \frac{18}{80}, \frac{19}{80}$ (iii) (iv) 5 2 5 12 (ii) (iii) 0.0001131331333.... 19. 0 (iv) 1.5 **(v)** (i) $\frac{7\sqrt{6}}{12}$ 8 3∛7 $\sqrt[28]{2^{18}.3^{11}}$ $\sqrt{5}$ (iii) 22. (i) (i) (iv) $\frac{5\sqrt{2}}{4}$ $\frac{34}{\sqrt{3}}$ $5 - 2\sqrt{6}$ (vi) (vii) 0 (viii) (v) $\frac{\sqrt{3}}{2}$ (ix) $\frac{2\sqrt{3}}{9}$ $\frac{2\sqrt{30}}{3}$ $\frac{3\sqrt{2}+2}{8}$ (iii) $\sqrt{41} + 5$ 23. (i) (ii) (iv) $3\sqrt{2}-2\sqrt{3}$ $7 + 4\sqrt{3}$ $5 + 2\sqrt{6}$ $9 + 2\sqrt{15}$ (vi) (vii) (viii) (v) $\frac{9+4\sqrt{6}}{15}$ (ix) $a = \frac{9}{11}$ $\frac{-5}{6}$ 24. (i) (ii) (iii) (iv) a = 0, b = 1 a = 11 2√3 25. 98 2.063 26. 27. TYPE (IV) 28. (i) 2.309 (ii) 2.449 (iii) 0.463 (iv) 0.414 0.318 (v) 2025 29. (i) 6 (ii) (iii) 9 (iv) 5 64 3^{-1} (v) (vi) - 3 (vii) 16 167 90 32. 33. 30. 7 31. 98 1 34. 214

					E	xerc	ise-1					
				SU	BJEC	TIVE	QUES	TION	S			
Sectio	n (A)											
A.1	0.1818		A.2	$-\frac{7}{4}, -$	$\frac{3}{2}, -\frac{5}{4}$		A.3	$\frac{19}{30}, \frac{2}{3}$	$\frac{2}{3}, \frac{7}{10},$	$\frac{11}{15}, \frac{23}{30}$		
A.4	(i)	<u>37</u> 99	(ii)	479 11		(iii)	53192 9990		(iv)	4159 900		
Sectio	on (B)											
B.1	1.8010	01,1.	901001	,2.010	001							
B.2	0.7507	500750	007,	0.767076	6700767	70007	, and 0.	808008	000800	008		
B.3	(3 + 🗸	2)(3–	√2)									
Sectio	n (C)											
C.1	84		C.2	5√5			C.3	$\frac{1}{5}$		C.4	-\sqrt{3}	_
C.5	11.904	•	C.6	36 a⁴ b	⁶ c³ ∜10	8	C.7	(i)	0	(ii)	<u>114 –</u> 30	<u>41√6</u> 0
C.8	(i)	$a = \frac{9}{2}$	$\& b = \frac{1}{2}$	•	(ii)	a = 0 a	and b = 1			C.9	10	
C.11	⁹ √4 <	∜3 < ∛2́	2 C.12	52								
Sectio	n (D)											
D.1	3		D.2	28√2		D.3	1					
				C)BJEC		QUEST	IONS				
Sectio	n (A)											
A.1	(A)	A.2	(C)		A.3	(D)		A.4	(C)			
Sectio	n (B)											
B.1	(C)	B.2	(D)		B.3	(A)		B.4	(B)		B.5	(B)
B.6	(C)											
Sectio	on (C)											
C.1	(B)	C.2	(C)		C.3	(C)		C.4	(B)		C.5	(B)
C.6	(D)	C.7	(C)		C.8	(A)		C.9	(A)		C.10	(B)
C.11	(B)	C.12	(B)		C.13	(A)		C.14	(B)			
Sectio	on (D)											
D.1	(D)	D-2.	(B)		D-3.	(B)		D-4.	(C)		D-5.	(D)

						Ex	erci	ise-2	2						
Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	А	С	D	С	В	В	С	А	D	С	А	В	D	А	В
Ques.	16	17	18	19	20	21	22	23							
Ans.	В	В	А	В	А	С	С	В							

Exercise-3															
Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	В	А	В	D	D	В	С	А	D	С	С	D	С	С
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	С	Α	В	D	В	А	D	В	С	В	В	В	А	Α
Ques.	31	32	33												
Ans.	А	С	В												

